a modified method to determine a well-dispersed subset of non-dominated vectors of an momilp problem

Authors

ghasem tohidi

department of mathematics, islamic azad university, central tehran branch, iran iran, islamic republic of shabnam razavyan

abstract

this paper uses the l1−norm and the concept of the non-dominated vector, topropose a method to find a well-dispersed subset of non-dominated (wdsnd) vectorsof a multi-objective mixed integer linear programming (momilp) problem.the proposed method generalizes the proposed approach by tohidi and razavyan[tohidi g., s. razavyan (2014), determining a well-dispersed subset of non-dominatedvectors of multi-objective integer linear programming problem, international journalof industrial mathematics, (accepted for publication)] to find a wdsnd vectors of anmomilp problem.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A MODIFIED METHOD TO DETERMINE A WELL-DISPERSED SUBSET OF NON-DOMINATED VECTORS OF AN MOMILP PROBLEM

This paper uses the L1−norm and the concept of the non-dominated vector, topropose a method to find a well-dispersed subset of non-dominated (WDSND) vectorsof a multi-objective mixed integer linear programming (MOMILP) problem.The proposed method generalizes the proposed approach by Tohidi and Razavyan[Tohidi G., S. Razavyan (2014), determining a well-dispersed subset of non-dominatedvectors of...

full text

A new method to determine a well-dispersed subsets of non-dominated vectors for MOMILP ‎problem

Multi-objective optimization is the simultaneous consideration of two or more objective functions that are completely or partially inconflict with each other. The optimality of such optimizations is largely defined through the Pareto optimality. Multiple objective integer linear programs (MOILP) are special cases of multiple criteria decision making problems. Numerous algorithms have been desig...

full text

a new method to determine a well-dispersed subsets of non-dominated vectors for momilp ‎problem

multi-objective optimization is the simultaneous consideration of two or more objective functions that are completely or partially inconflict with each other. the optimality of such optimizations is largely defined through the pareto optimality. multiple objective integer linear programs (moilp) are special cases of multiple criteria decision making problems. numerous algorithms have been desig...

full text

A new method to determine a well-dispersed subsets of non-dominated vectors for MOMILP problem

Multi-objective optimization is the simultaneous consideration of two or more objective functions that are completely or partially in conflict with each other. The optimality of such optimizations is largely defined through the Pareto optimality. Multiple objective integer linear programs (MOILP) are special cases of multiple criteria decision making problems. Numerous algorithms have been desi...

full text

Well-dispersed subsets of non-dominated solutions for MOMILP ‎problem

This paper uses the weighted L$_1-$norm to propose an algorithm for finding a well-dispersed subset of non-dominated solutions of multiple objective mixed integer linear programming problem. When all variables are integer it finds the whole set of efficient solutions. In each iteration of the proposed method only a mixed integer linear programming problem is solved and its optimal solutions gen...

full text

well-dispersed subsets of non-dominated solutions for momilp ‎problem

this paper uses the weighted l$_1-$norm to propose an algorithm for finding a well-dispersed subset of non-dominated solutions of multiple objective mixed integer linear programming problem. when all variables are integer it finds the whole set of efficient solutions. in each iteration of the proposed method only a mixed integer linear programming problem is solved and its optimal solutions gen...

full text

My Resources

Save resource for easier access later


Journal title:
international journal of mathematical modelling and computations

جلد ۵، شماره ۲ (SPRING)، صفحات ۱۴۱-۱۴۷

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023